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STATISTICAL EXTREMAL PROBLEMS AND UNIQUE SOLVABILITY 
OF THE THREE-DIMENSIONAL NAVIER-STOKES SYSTEM 

UNDER A~OST ALL INITIAL ~ONDITIONS~ 

A.V. FUKSIKOV 

A probabilistic measure p. is constructed on the functional space of initial con- 
ditions of the mixed boundary problem, for the three-dimensional Navier-Stokes 

(N-S) system. The measure is such, that for pO, i.e., for almost all initial COn- 
ditions, the boundary value problem has a unique solution. To construct p0 it is 

found necessary to solve a certain extremal problem. Theorems of existence and 

uniqueness of the solution to this extremal problem are proved. 

1. Introduct ion. We consider, in the cylinder Q = f0, 7'1 x 52 where T > 0. fZ c RS is 

a bounded region with boundary aQ E c- the following N-S system: 

y (kx) - vAy+(y,~)y----_p+f, divy=O (1.11 

Here t E (0, T), I = (q, x2, x3) ~‘2, y = (yi, y,, y3) is the velocity, p(t, x) is the pressure, v> 
U is viscosity, f = (f,, f2. f3) is the external force and y‘ = aY/at. The following adhesion 
condition is specified on the side surface (0, T) s 65! of the cylinder: 

@,x) E (0, T) x aQ, y = 0 

and the initial condition has the form 

(1.2) 

t = 0. yljy = yo (1.3) 

where y0 is the contraction operator of the function y (t, x) at t = 0 : To?’ = )’ (0. x) , The 
theorem on unique solvability of the problem (l.l)- (1.3) at any (f, ye) belonging to the cor- 
responding functional spaces, is not proved. It is only shown that for any y. the problem 
(l.l)- (1.3) has a unique solution provided that I belongs to some set @(ye) dense in the 
space of the right-hand sides /l/. 

Let f denote an arbitrary fixed external force independent of time t. Below we give a 
method of defining such a probabilistic measure IL,, on the space of initial conditions (Y")> 
that for PO, i.e., almost all YO, the problem (l.l)-- (1.3) has a unique solution. 

The method is based on solving a certain statistical extremal problem related to the N-S 
system. The extremal problem in ques$ion is a statistical analog of the control problems 
which have, at certain initial values, more than one solution /2/. Nevertheless, as we show 
below, this statistical extremal problem has a unique solution. The measure p,, is found un- 
iquely from the solution of the statistical extremal problem. However, the extremal problem 
itself Contains parameters and this implies the existence of many measures p,wbich can be 
obtained using the proposed method. We shall now define the notation and remind of certain 
concepts necessary for formulating and solving the problem. 

2. Functional spaces. We denote by 11 . )X)( the norm of the Banach space X. We 
recall that the set of functions u(x), x~S2 with finite norm 

where a = (a,, u2, a3) is a multiple index and 
called the Sobolev space Wk,(Q) . Let 

I a I = aI + a2 i_ a3, Dau r aillLa/~~slald~,a'i~~a*, is 

V = (v (x) E (Cl’,,- (I;z)Js : div v = 0} 

and Hkbe the closure of I'in (W,R(a))3 for k = 0, 1, Hz =H’Y~(W,z(Q))3 where (WC (Cl))3 is 
a Sobolev space of three-dimensional vector fields. 
by the relation 

The norm II . Ilk of the space Hk is given 
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IIUll*=IIU~(W~k(~))~~~, L,=O,f,” 

If X is a Banach space, 

ingfulin X, 
then L,(O, T; X) denotes a set of functions defined on (il. 3‘) *riti n:t-*rb- 

for which the norm 

II u I &I (0, T; X) II = ([ 11 u (t) I x Il~‘dt)L’p 
D 

is finite. Below we use the following notation: 

L*‘= &(O, T;HS), 1) uILpBJJ = II UlL,(O? T; HS) ;I 
Let us set 

ti',2=(~(t)~~z2:y'~Lzo), I~y~H'~~~~2=~~~~L~2/~2+~~y'(L20~~* 

In what follows, 

Y E H" 

we use the tensor products of the space H'and tensor productsofthevectors 
(the correspondingdefinitions are given in /3/). We also use the notation 

@"H"=H"@....@H" (k times), @ky=y@...@y (li times) 

The norm of the space @"H" is denoted by !/. Ilciij and the scalar product by i'. .),k)- 

3. Probabilistic measures and their moments. 
of the Bore1 subsets of the Banach space 

We denote by B (X) the u-algebra 

on 8 (H’) and satisfying the condition 
X. Let ~(dy,,) be the probabilistic measure defined 

s // !O /(Ok P (dY") < L VA J> (i (3.1) 

Here and henceforth the integral will be taken, unless indicated otherwise, over the whole 

domain of definition of the measure, which in the present case is H”. 
We define on the Hilbert space TJ’H’ the functional 

Fk ('r)= 1 ('z,"j'O, ‘6hk)p (&I) (?.2) 

Since by virtue of the Cauchy-Buniakowski inequality 

(3.3) 

it follows from (3.1) that the functional (3.2) is continuous. Therefore by virtue of the 

Riesz theorem there exists a vector m,. F ;)‘H’ such that .1 - . . 

:n;,,cp)(k)==S @Yo*P)(6)~ (dYa)TJV E (@kH" 
(3.4) 

The element mk is called the k-th moment of the measure p. 

In addition to the measure defined on the space H” of vector fields depending on s E II, 

we also consider the measures on the space of vector fields depending on 1 ?Z (0. 7). x iz 5! 

Let P be a probabilistic measure on B (HI.“). We define the measure yo*P using the relations 

yO*P(oo)= P (,';+O") VW, ER (H") (3.5) 

y,:H’.=-HIi=r (3.6) 

Here y. is the contraction operator of y (t.x) at t = I.1 and yO-'0, is the complete inverse 

image of the set oO under the mapping (3.6). The mapping (3.6) is continuous /4/', therefore 

the formula (3.5) determines the probabilistic measure on B (H”) concentrated on N'. The 

measure y,,*P is a contraction of the measure ['at 1 : 0. If 

111 y(H’,*l(kP(dy)< -a Vk>O 

then by virtue of (3.5) and (3.6) 

1 II yo llok yo*J (&/d = 5 II VOY Ilo P (+/I < ~“1 II Y I H’,? II” P (h) < y 

and this yields the moments lllc of the measure sip 

(hfk, (T)(f) = S (&f YO> (P)(k) )‘O*p t&h) = _ \; (i;lkyoy, (r:(h-) P(dy) . 
(3.7) 
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4. Statistical solutions. We denote by (.:) the scalar product in the spaces 

(L,(Q))3 and H”, and by [., .] the scalar product in .& and (&(@)'I 

(U,V)=S _$ Uj(z)uj(x)dz, [u,v,=s'<u(t,.),v(t. .)>dt 

!I >=I 0 

where u = (a,, uz, ug), v = (u,, U2, Va). Since for any v E H”. p E W,l(a) (Vp,v) = '1. therefore 

scalar multiplying in (l;,(Q))3 both parts of the first equation of (1.1) by z E L,O, weobtain 

[Y' - vAy+(y.V)y-j,z]=O VzELz’ (4.1) 

From the theorem on orthogonal expansion of (L*(Q)) 3 into the subspaces of solenoidal and 

potential vector fields /5/ it follows that y eH’*’ satisfies the relation (4.1) if and only 

if there exists p =Lz(O, T; W,l(Q)) such that the pair (y,p) satisfies (1.1). Therefore in 

what follows we shall use (4.1) instead of (1.1). We shall call the function y =H'," satis- 

fying (4-l), an individual solution of the N-S system. We denote by (9, the set of probabil- 

istic measures defined on B (HI,“) . If Xis a Banach space, then C,(X) is a space of contin- 

uous bounded functions on X. The measure P E 8, is called a statistical solution of the 

N-S system, provided that for any z EL,’ and rp E C, (HI.“) the functional Y - Is'- vAy + (Y. 

V) y - f, zl is P-integrable and 

SIY.- VAY + (Y, V) y- r,zj cp(y) P(dy) =0 (4.2) 

We note that for every individual solution we can easily find the corresponding statist- 

ical solution. Indeed, let x be the individual solution and let us consider the measure 6, 

defined by the relation 

V~EB(H’.*) S,(o)= (4.3) 

Then by virtue of (4.2) and (4.3) we have for any z E L,", cp E C, (HI**) 

Sk* - vAy + (y, V)Y--I, 4 cp(y)&(+) =[x'- VAX + (x~v)x-- I, 4 (c(x) =o 

and 6, is therefore a statistical solution. 

5. Formulation of the extremal problem. Let a probabilistic measure CL (G,) be 
given on the space of initial conditions H", the measure satisfying the condition 

S exp II TO 110~ p (~Yo) < m (5.1) 

We denote by mk the moments of the measure P given by (3.4). Consider the functional 

where Mk are the moments of the measure y;P determined by equality (3.7), and N> 0 is a 
parameter. We consider the following extremal problem: 

J (P) + inf (5.3) 

zJ E@+, s [Y’ - vAy + (y, V) y - f, z] cp (y) P (dy) = 0, Vz E Lo, cp E Cb (11’92) (5.4) 

where J (p) is the functional (5.2). Thus, out of all statistical solutions,wehavetochoose 
a solution for which the integral 

Sexp II YILzl ll”P (dY) (5.5) 

is not very large and the contraction at t = 0 has moments as close as possible to the given 

moments mk. We call the admissible element the statistical solution on which the functional 
(5.2) is finite. Let us denote by A the set of admissible elements, and let 
the measure P’EA such that 

A# g. Then 

J (P’) = inf J (P) 
PEA 

will be a solution of the problem (5.3), (5.4). 



fmm which, by virtue of the continuity of the inclusion &~cR'~ follows 16.1). The relation 
(6.25 foUXJwa from OS.11 and the energetic inequality of the N-S system. in proving (6.31 
we use the norms ll.ll of the spaces Pwith real I, which are defined in e.g. /l/. 

Let us find the operator b(u,vj using the relation ilr(u,v),w)= c(u,V)v,w). In /6/ it is 
shown that 

1&f=. ~~~~~~~~~~~~~~ !6.61 

therefore frcrrrl (6.4) and (6.21 we obtain the inequality 
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Now from (6.9)- (6.11) it follows that J@,)<oo, and hence A # 0. 

Lemma 6.3. Let P be a statistical solution. Then a set wEB(fl*') exists suchthat 

P(w)=l and Wconsists of individual solutions of the N-S system. The lemma is proved in 

the same manner as the analogous assertion in /3/. 

Lemma 6.4. Let P,EA be a sequenceofmeasures satisfying the inequality 

J(Pi! <h (6.12) 

where A. is independent of i. Then a subsequence P, of the sequence Pi exists, converging 

weakly on C(0, T; H”) to the measure P tz 8+, the latter representing a statistical solution. 

Proof. Let Wibe a set of Pt with full measure, consisting of the individual solutions. 

The inequality (6.3) holds for any YE wt. Raising both sides of this inequality to the power 
k/2 and integrating with respect to P, we find, by virtue of (6.12), that 

(6.13) 

where ek is independent of i. Since the inclusion H l,*cC(O, T;EP)is completely continuous /3/, 
then from (6.13) and 1u.V. Prokhorov theorem /7,3/ it follows that a subsequence PI exists, 
converging weakly on C(O,T;80) to some measure P. Obviously, P is a probabilistic measure 

on C(0.I'; ?P). 
Let (e,) be an orthonormed basis in H’s 2 , and let for any jelEF(O,T;E') (definition of 

the space H4 is given in /l/). we denote by G, the orthoprojector in D'onto the subspace 

te,, . . .* +I generated by the first T vectors ej. The functional Y-.jlC,Y[H%*Uk, is defined on 
H'.' and is extended to C(0.T; Ho) by virtue of the continuity. By virtue of (6.13) we have 

(6.14) 

Passing in (6.14) to the limit as j-03, with help of the lemma 3.2 given in /3/, and using 
the Beppo-Levi theorem we find, as r-m, 

(6.15) 

From this it follows that the measure P is concentrated on HI.', and hence PEG+. 

Integrating the expression [y'- vAy+(y, V)y-f,zl by parts we find, that for any z E Cl(O, 
T; a) the functional y-_[y'- vAy+(y, V)y- f,zl is continuous on C(O,T;X"). Therefore, if (PE 
C,(C(O,T;80)) vanishes outside some bounded set, then the integrand expression in (4.2) belongs 
to c, (C (0, T: HO)). Since Pi is a statistical solution, we find by substituting Pi into (4.2) 
and passing to the limit as f-00, that P also satisfies (4.2). Aproximating now ZE Lf by 
the functions Z,E C*(O,T;H') and (PE Ct,(R*,*) by the functions V,I" C,(C(O,T;HO)) with bounded car- 
riers, we find from the Lebesque theorem and (6.15) that (4.2) holds for anyzE L,",cp~C:,(H1+s), 
consequently P is a statistical solution. 

Lemma 6.5. If Pj E A and PI + P weakly on C (0, T;H’), then from (6.12) it follows 
that 

J(P) < h 

Proof. We shall show that for any (PE 0kXO 

Let 

ji:S <BkYo. 'P)(k)?O*pj (dYo) = S (@'Yov ‘P)(k) Vo’p (dyn) 

B,= (y EC(O,Ti HO) :Ily I C(0, RH”)fi< r), s, = MI 

(6.16) 

i.e. S, is a boundary of the sphere B,. Clearly, for any r>O and B,S, are p-measurable 
and there exists a sequence with r-00 such that P(S,)=O Vr. Since the functional Y- <@y,y, 
qqckj is continuous on C(0, T; tro), we have /7/ 

S (Bk'l~Y. v)(k)pj (dY) A S ‘BkY~Y, p)(k)'(dY) 
87 f-m B* 

Let Or= C(0, T;HO)\B,. By virtue of the Chebyshev inequality, (6.2) and (6.12), 

1 s (@‘YoY* v)(k) p, (dY) I<’ s II Y I L”, lfpj (dY) 
% % 

< f S (i + II Y I L,‘IIJk”pj (dy) G c);/’ 

(6.17) 

(6.18) 
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where c,, is independent of r and j. From (3.7), (6.17) and (6.18) follows ih.Lhi. Let 118 j 

be the k-th moment of the measure yo*Pj while Mk the k -th moment of the measu,e .io*i'. Tilt*- 

(6.16) means that 

Mkj - Mh as jdrn weakly in :<*H" :h.l;l: 

From (5.2) and (6.12) it follows that for any natural 1 
, 

s exp 1 y 1 f+? lllPj (dy) + N c -&I mk -- Mkj Ilk2 < A 

I;=_1 

Let us pass in this inequality to the limit as i--, using (6.19) for the second term of the 
left-hand side, andthe arguments used in the course of proving (6.15), for the first term. As 

a result we find that for any I 

Passing now to the limit as 1- co. we obtain the affimlation of lemma. Next we consider 

the question of existence of a solution of the problem (5.3), (5.4). 

Theorem 6.1. Let EEH’. Then the problem (5.3), (5.4) has a solution P'. 

Proof. By virtue of Lemma 6.2 A p 0 and a sequence &',=A exists such that 

lim/(P,)=infJ(P) (6.20) 
i-m PEA 

Clearly, J(Pi),< c where c is independent of i, therefore according to Lemma 6.4 there exrsts 
a subsequence Pj converging weakly to the statistical solution I': By virtue of Lemma 6.5, 

I" E A and 

J(P)< limJ(Pj) (6.21) 
I-- 

and from (6.20), (6.21) it follows that P'is a solution of the problem (5.31, (5.4). 

7. Unique solvability of the N-S system for almost all initial conditions. 
Let P'be a solution of the system (5.3), (5.4). By virtue of Lemma 6.3 there exists a set 

u/E B (H1s2) of P'-complete measure consisting of the individual solutions. Let us put 

V=y,W=~Y,EH~:yo=yoY for some YEW (7.1) 

Then /3/ yO*P’(V)= 1. The definition (7.1) of the set Vimplies directly that for any 

there exists a solution yEH'** of the problem (4.1), (1.3). Since not more than one)'io?u! 

tion of the problem (4.1), (1.3) exists in the space H’s2 /3/, this proves the following 

theorem. 

Theorem 7.1. Let P’ be a solution of the problem (5.3), (5.4) and ~,,=y~*P'Then for 

pLa,i.e. for almost all initial conditions y,, the problem (4-l), (1.3) has a unique SOlU- 

tion y E H’r’ 

8. Uniqueness of the solution of the problem (5.3), (5.4) 

Theorem 8.1. The problem (5.3), (5.4) has not more than one solution. 

Proof. Let P, and f', be two solutions of the problem (5.31, (5.4); pi=yo*P,,i%lb, LS the 
li-th moment of the measure vi and i = I,2 - By virtue of the strong convexity of any Hilbert 

norm 11. I( we have 
II (h, t k,)/2 11’ < (II k, 11’ + I/ k, 11712 

and the equality holds when and only when k, = hZ. Therefore 

J ((PI t p,)h < (J (PI) + J (P,W (8.1; 

and the equality is reached only and only in the case when 

,Zfh.,r = lWh.,$ 18.2) 

for any k. Since P, and P, are solutions of problem (5.3), (5.4) while (P, -: P&2 EA. 

therefore the equality is attained in (8.1) and this implies that (8.2) holds. 

By virtue of (6.1) we have, for sufficiently small B>O, 

(8.3) 
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Let 

Xk,i = S II YO IlO’ Pi (dYO) 

The relation (8.3) implies the following inequality: 

k=l 

from which, making use of the Stirling formula we obtain 

(8.4) 

Using (8.2), (8.4) we derive the relation p, = pLI. Let {e,} be an orthonormed basis in Ho and 

G, an orthoprojector in H"onto the subspace fer,..., e,] generated by the vectors e, , . . . , e, . 

Consider the finite-dimensional projections of the measures pi 

p*'(o)=p, (G%) VoEB(te~,...,e,l) 

Clearly, the k-th moment M:,i of the measure p: is equal to (BkGGr)Mki where ak G, is the 

k-th tensor degree of the operator G,. Therefore by virtue of (8.2), we have 

M;,l= M;,, Vk r (8.5) 

Let us set 

Clearly, that 

and hence by virtue of (8.4), 

Vr (8.6) 

From (8.6) it follows /8/ that the measure pi is uniquely determined by its moments Mkir, 
therefore by virtue of (8.5) pL1'=pzr. Since the latter equality holds for any r, we have 

p1 = p2 from which it follows /3/ that PI = P,, which proves the theorem. 

As we have already said, the problem (5.3), (5.4) represents a statistical analog of the 

control problems for a system described by the N-S equations which, as was shown in /2/, have 

more than one solution under certain initial conditions. Nonuniqueness of the solutions in a 

determinate case is explained by the fact that in these problems the nonlinearity of the N-S 

equations results in the nonconvexity of the set of admissible elements. The difference be- 

tween the determinate and statistical problems lies, roughly speaking, in the fact that in the 

first case the solution is sought in the class of the d-measure, and in the second case in a 

wider class of all probabilistic measures. Under such extension the nonconvex class becomes 

convex and this leads to the uniqueness of the solution in the case of the statisticalproblems. 

9. Certain variants of the problem (5.3), (5.4). We shall say thatthemeasure 

IL,, defined on B(H) has the property E if for p,,, almost all Y,, the problem (4.1),(1.3)has 
auniquesolution.We note that the integral (5.5) of the functional (5.2) carries the following 

functions: lo. Since the norm II Y I -G*ll is P-integrable, 

E since the problem (4-l), 

the measure yo*P hasothe property 

(1.3) has at most one solution in the space Lz2 ; 2 . Since 

erp 11 y 1 LL21/” is P-integrable, the relation (8.4) can be proved and this ensures that the 

solution of the problem (5.31, (5.4) is unique. Therefore in constructing the measure C' I, 
with the property E we can use, apart from the norm I/. 1 L,*II, the normsofthe spaces in which 
the solutron of the problem (4.1), (1.3) is unique, e.g., !!. 1 L,‘\\. The functional e\p II II2 
can be replaced by the functionals growing less rapidly as i/y/(+ XI. We can, for example, 
replace the functional (5.2) by the functional 

(9.1) 
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Then the problem (9.1), (5.4) will also have a unique solution I' and va*P wiil IIdvr trlt 

property E. Reducing the rate of growth in the value of the integrand in (5.5) by consider- 

ing, e.g., a functional obeying a power law, we find that the infinite series in (5.21 can 

be conveniently replaced by a finite sum. Let us consider, for example, the problem 

for P satisfying the conditions (5.4). The problem (9.21, (5.4) has a solution l'while yo*P 

has the property E. An attempt to prove the uniqueness of the solution of (9.21, (5.4) has, 

however, proved unsuccessfull. It could only be shown that the moments Ml and M, are deter- 

mined uniquely. The results related to the problem (9.2), (5.4) are given in /9/. 
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