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STATISTICAL EXTREMAL PROBLEMS AND UNIQUE SOLVABILITY
OF THE THREE-DIMENSIONAL NAVIER-—STOKES*SYSTEM
UNDER ALMOST ALL INITIAL CONDITIONS

A.V. FURSIKOV

A probabilistic measure p, is constructed on the functional space of initial con-
ditions of the mixed boundary problem, for the three-dimensional Navier - Stokes
(N-5) system. The measure is such, that for po, i.e., for almost all initial con-
ditions, the boundary value problem has a unique solution, To construct p, it is
found necessary to solve a certain extremal problem. Theorems of existence and
uniqueness of the solution to this extremal problem are proved.

1. Introduction. we consider, in the cylinder ¢ = [0, Tl x @ where T >0 QC R is
a bounded region with boundary 4Q & C= the following N-5 system:

Y& x)—vAY +(y,p)y=—vp +{, divy=0 (1.1}

Here t = (0, 1), x = (2, %y, 25 &2, y = {lh. ¥z ¥5) is the velocity, p{f x) is the pressure, v >
0 is viscosity, f = (fi, fo. f4) is the external force and ¥y = dv/dt. The following adhesion
condition is specified on the side surface (0, T) X ¢ of the cylinder:

tx)es(0,7)xd, y=0 (1.2)
and the initial condition has the fom
t =0, vy =y (1.3)

where v, is the contraction operator of the function ¥y (& x) at ¢t =0:v =y (0.x) . The
theorem on unique solvability of the problem (l.1)— (1.3) at any ({,y,) belonging to the cor-
responding functional spaces, is not proved. It is only shown that for any y, the problem
(1.1}— {1.3) has a unique solution provided that [ belongs to some set # (y,) dense in the
space of the right-hand sides /1/.

Let f denote an arbitrary fixed external force independent of time (. Below we give a
method of defining such a probabilistic measure W, on the space of initial conditions {y,}.
that for p,, i.e., almost all 1y, the problem (l.1)— (1.3) has a unique solution.

The method is based on solving a certain statistical extremal problem related to the N-S
system. The extremal problem in question is a statistical analog of the control problems
which have, at certain initial values, more than one solution /2/. Nevertheless, as we show
below, this statistical extremal problem has a unique solution. The measure p, is found un-
iquely from the solution of the statistical extremal problem. However, the extremal problem
itself contains parameters and this implies the existence of many measures u, which can be
obtained using the proposed method. We shall now define the notation and remind of certain
concepts necessary for formulating and solving the problem.

2. Functional spaces. We denote by ||+ |X|| the norm of the Banach space X. We
recall that the set of functions u(x), x &= Q with finite norm

bulwE@p=( Y 10w ax)”

fajsk @

where a = (@;, @, @,) is a multiple index and |a|=—a, -+ 2 + oy, Dou = Jinlu/dr,@0z,%0z.0 , is
called the Scbolev space W' (Q). Let
Ve (v (x) S{Ce> ()P divv =0}

and H"be the closure of Vin (W,5(Q)® for k=0, 1, H* = HO(W2(Q))®  where (WK (Q))P is
a Sobolev space of three-dimensional vector fields. The norm | - iy of the space H* is given
by the relation
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Pale =luf@vF@p|, #=0.12

If X is a Banach space, then L, (0, T; X) denotes a set of functions defined on (0. ) and mean-
ingful in X, for which the norm

T
helZy ©, 7 X0 | = (§ hu @) X ar)”

is finite. Below we use the following notation:

Lpt=Lp (0, T HY), fu|Ly* || ={u|Lp (0, T; HY}
Let us set
Hir=tyW)E L’y €L, |y Hv2 2= |y| L2 + [y | L]

In what follows, we use the tensor products of the space H° and tensor products of the vectors
Yy & H° (the correspondingdefinitions are given in /3/). We also use the notation

RFH° =H®... @ H (kb times ) @"y:y@k..@y (A times)
The norm of the space ®&'H° is denoted by |} - llsy and the scalar product by (. “du

3. Probabilistic measures and their moments. we denote by B (X) the g-algebra
of the Borel subsets of the Banach space X. Let u (dy,) be the probabilistic measure defined
on B (H°) and satisfying the condition

S\i)'OilokM(dy0)<N V0 1)

Here and henceforth the integral will be taken, unless indicated otherwise, over the whole
domain of definition of the measure, which in the present case is H°.
We define on the Hilbert space ®*H® the functional

Fi (@) =\ (G0, ¢3a0 1 (dyo) (3.2)
Since by virtue of the Cauchy— Buniakowski inequality

1Pt | < S vo o it (dyo | ¢ fla) (3.3)

it follows from (3.1) that the functional (3.2) is continuous. Therefore by virtue of the
Riesz theorem there exists a vector m, = OFH  such that

s @D 0n == S (B0 @31 (dyo) Vo = QFH°

The element m; is called the #k-th moment of the measure u.

In addition to the measure defined on the space H° of vector fields depending on x & €,
we also consider the measures on the space of vector fields depending on =0T, x=Q.
Let P be a probabilistic measure on B (H'?). We define the measure y,*P using the relations

Yo*P (o) = P (v5'wa) Voo € B (H) (3.5)
yo:Hl,z__,chH'J (3.6)
Here y, is the contraction operator of y (t.x) at ¢ =10 and y,'w, is the complete inverse
image of the set o, under the mapping (3.6). The mapping (3.6} is continuous /4/, therefore
the formula (3.5) determines the probabilistic measure on B (H®) concentrated on H. The
measure y,*P is a contraction of the measure Pat ¢ =10. If
Siyl e PEp <~ Vi>0
then by virtue of (3.5) and (3.6)
§ 10 0" v0* P (dyo) = § U voy 0" P (dy) < " Sy | B2 |F P (dy) <
and this yields the moments M, of the measure Yol
(3.7)

(M, @y = S C&F Yo, ©ay Yor £ (dyo) =§ < ¥ vy, ¢ron P (dy)
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4. Statistical solutions. We denote by (., .) the scalar product in the spaces
(L, (@) and H° and by [-,:] the scalar product in L, and (L, (@)
3 T
<u, v>=S Z uj(z)v;(z)dz, |[u, v]:S <uft, ), v (t, -Hdt
o =1 °
where u = (u;, Uy, Ug), V = (v, Uy, Vg). Since for any v & H° p &= W' (Q)<Vp, v) = D. therefore
scalar multiplying in (L,(Q))® both parts of the first equation of (1.1) by z& L, we obtain

v — vy + (v.V)y —f,21=0 VzELy (4.1)

From the theorem on orthogonal expansion of (L, (R))® into the subspaces of solenoidal and
potential vector fields /5/ it follows that y & H'? satisfies the relation (4.1) if and only
if there exists peL,(0,T; W,'(Q)) such that the pair (y, p) satisfies (1.1). Therefore in
what follows we shall use (4.1) instead of (1.1). We shall call the function y & H'? satis-
fying (4.1), an individual solution of the N-S system. We denote by O, the set of probabil-
istic measures defined on B (H'?). If X is a Banach space, then (, (X) is a space of contin-
uous bounded functions on X. The measure P & 0, is called a statistical solution of the
N-S system, provided that for any z e L,° and ¢ & C, (H'?) the functional y— [y — vAy + (y.
V)y —f, 2] is P-integrable and

S[y'—vﬁy+(y,V)y—f-ZI<o(y)P(dy)=0 (4.2)

We note that for every individual solution we can easily find the corresponding statist-
ical solution. Indeed, let % be the individual solution and let us consider the measure 3§,
defined by the relation

1, if y&€o

Vo= B(HV?) 8y (w)= 0, if yEo (4.3)

Then by virtue of (4.2) and (4.3) we have for any z& L2 ¢ &= C, (HW)

(v —vAy + (1) y —h 2 o (1) 8, (dy) =T — A + (1. V1 — T2l g () =0

and 61 is therefore a statistical solution.

5. Formulation of the extremal problem. Let a probabilistic measure p (dy,) be
given on the space of initial conditions H° the measure satisfying the condition

S exp [ yo flo® b (dyo) < >0 (5.1)
We denote by m, the moments of the measure gy given by (3.4). Consider the functional
JPy=\exply| Ly + N Y - 2
(Py= \exp|y|L®|* P (dy) + < e — My (5.2)
k=1

where M, are the moments of the measure ‘ySP determined by equality (3.7}, and N> 0 is a
parameter. We consider the following extremal problem:

J (P) — inf (5.3)
P8, (Iy —vAy+ (1. My —LaoMPEN =0, VzeL’ ¢&C,(H1) (5.4

where J (P) is the functional (5.2). Thus, out of all statistical solutions, we have to choose
a solution for which the integral

SeXPIIYILz’II’P(dy) (5.5)

is not very large and the contraction at ¢t =0 has moments as close as possible to the given
moments m,. We call the admissible element the statistical solution on which the functional
{5.2) is finite. Let us denote by 4 the set of admissible elements, and let A= (. Then
the measure P’ <= 4 such that

J(Py=infJ (P)

PsA

will be a solution of the problem (5.3), (5.4).
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6. Existence of the solution to the problem {5.3), (5.4). Lemma 6.1. Lec
fe H° and ¥ be an individual solution. Then

b vy o << et -y Lt (6. 1
By la®f<ett + Iy} L2y (6.5
PSP <ed + 1y | L) (6.3

whare ¢ depends on f,
Proof. aAssuming that z=r()v in (4.1}, where r(iymL,(0 Ty v H°, we £ind that
- VvAY iy My —Lvi=0 ¥vaF (6,4}
for almost all te=10,7). Setting in (6.4) vay(, -), we obtain the relation

t d

5 g Pl Vi Vy e — <E, 0 == 0 {6.5)

Let @ ={(F.t7. HMultipiving (6.5} by o{), adding ¢ §¥i¥2 to both sides of the resulting
expression and integrating with respect to :, we obtain

T

1 B y
Sl = | eV — o Iy k) d S (bl

@

from which, by virtue of the continuity of the inclusion H:C g, follows {6.1). The relation
{6.2} follows from {6.1) and the enerxgetic inequality of the H-S system. In proving {6.3}
we use the norms {-f, of the spaces H®*with real s which are defined in e.g. /1l/.

Let us find the operator & (u, v) using the relation <b(u, v}, wy == <(u, V}v,w>. In /6/ it is
shown that

b5 {u, ¥)&«y<€§“§;§v§§+g (6.6}

provided that o> 0,p»0,vy>0and o $+y>%, From {6.6) it follows that
180y W ILFM) ely 1LY T L2
therefore from (6.4) and (6.2} we obtain the ineguality

[ el ETE RN SSY A B 6.7
From this inequality we find, as in /3/, that
WILLE ey | L7 Py L2iCo (U4 v | L2 16,8)

and by virtue of {6.6) and {6.8) we have
12 05 DL <Ay LS IYIESE < o (L +1y] L2 1P
from which, together with (6.4), we obtain (6.3).
TLemma 6.2. Let fte=H°. Then the set 4 of admissible elements is nonempty.

Proof. We knmow /5/ that for any fea H® there exists a solution g = & of the station-—
ary problem
CeVAY K V) g~ 6 =0 Vipes H®

Clearly, y is an individual solution of the nonstationary problem (4,1), thersfore 8, is a
statistical solution. We shall show that J{§,) <. Indeed,

Sexﬂm L2ps, @) =explxi LiF = exp FxlP <0 (6.9}

By virtue of (3.5), (4.3) and (3.7), the moments Mkof the measure y,*8, can be found using

the equation . N
My = (@ nyby vy = 8%

therefore we have
"Mk@m“‘“xoﬂ? (6.10)
rrom (3.2}~ (3.4} it follows that
U by < S 13obn (v

therefore by virtue of (5,1) we have

e

2
Z‘"m" ""<Sexpltyolb’w(éyu}<:m 6.1
ey,

k!
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Now from (6.9) — (6.11) it follows that J(3,) <o, and hence 4+ 3.

Lemma 6.3. Let P be a statistical solution. Then a set W <= B (H'?) exists such that
P(W)=1 and Wconsists of individual solutions of the N-S system. The lemma is proved in
the same manner as the analogous assertion in /3/.

Lemma 6.4. Let P, =4 be a sequence of measures satisfying the inequality
J(P) <M (6.12)

where A is independent of i. Then a subsequence P;of the sequence P; exists, converging
weakly on C (0, T; H°) to the measure P = @, the latter representing a statistical solution.

Proof. Let W; be a set of P, with full measure, consisting of the individual solutions.
The inequality (6.3) holds for any ye W,. Raising both sides of this inequality to the power
k/2 and integrating with respect to P; we find, by virtue of (6.12), that

Sh’lH"’ P @ <o (6.13)

where ¢p is independent of i. Since the inclusion HL2C C (0, T; H)is completely continuous /3/,
then from (6.13) and Iu.V. Prokhorov theorem /7,3/ it follows that a subsequence P; exists,
converging weakly on C (0, T; H°) to some measure P, Obviously, P is a probabilistic measure
on C(0,7; H%.

Let {¢;} be an orthonormed basis in H.3, and let for any je; = €3(0, T; HY) (definition of
the space H* is given in /1/). We denote by G, the orthoprojector in H.3 onto the subspace
leys . . ., e,] generated by the first r vectors ¢. The functional y-|G.y|HL|f, is defined on

H%? and is extended to € (0, T; H°) by virtue of the continuity. By virtue of (6.13) we have
16, y1 82 P, @y << (6.14)

Passing in (6.14) to the limit as j-+ 00, with help of the lemma 3.2 given in /3/, and using
the Beppo-Levi theorem we find, as r - oo,

Sryi a2 e @y <o (6.15)

From this it follows that the measure P is concentrated on HL?, and hence P e8,.

Integrating the expression [y’ —vAy + (y,V)y — 1,2z} by parts we find, that for any ze C1(0,
T; H*) the functional y—[y —vAy <+ (v,V)y — 4,2zl is continuous on ¢ (0, T; H°). Therefore, if ge
Cy (€ (0, T; H°)) vanishes outside some bounded set, then the integrand expression in (4.2) belongs
to C,(C(0, T; H%). Since P; is a statistical solution, we find by substituting P; into (4.2)
and passing to the limit as i— o, that P also satisfies (4.2). Aproximating now 2 L,° by
the functions z;e= C'(0, T; H*) and ¢ e« C, (H%%) by the functions g;e €, (C (0, T; H°) with bounded car-
riers, we find from the Lebesque theorem and (6.15) that (4.2) holds for anyze LS, 9 = C, (HL9),
consequently P is a statistical solution.

Lemma 6.5. If P;e=A and P;— P weakly on C (0, T; HY), then from (6.12) it follows

that
J(Py< A
Proof. We shall show that for any ¢ Q*H°
. k . _ k .
%xm S(® Yor @y %™ P; {dy0) —S<® Yor @iy Yo* P (dyo) (6.16)
Let B,={yeC(0,T; B :jy|CO, T; H)<r), S,=08B,

i.e. S8, is a boundary of the sphere B,. Clearly, for any r>0 and B,S, are p-measurable
and there exists a sequence with r— o such that P (§,)=0Vr. Since the functional y— (®%,y,
94 1s continuous on € (0, T; H°), we have /7/

k k
S (@ VeYs P>y P; (dy) —> S (D WY PP (dy) (6.17)
Fans

B, > B

Let 6,=C(0, T; H°) \ B,. By virtue of the Chebyshev inequality, (6.2) and (6.12),

k ’
] § <@y, 939 Py @) 1< Civitere, @ < %S (+ 0y L2D™P; (dy) <cpfr (6.18)
[

T ef
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where ¢, 1is independent of r and j. From (3.7), (6.17) and (6.18) follows (b.lo). Let ¥
be the k-th moment of the measure y,*P; while Mk the k-th moment of the measure v,*2. Ther
(6.16) means that

Mkj — My as j- oo weakly in @tH° (6.1

From (5.2) and (6.12) it follows that for any natural !
\ 1
(expuyiiepe @ + 8 Y Goim, bt <
K=1

Let us pass in this inequality to the limit as j-— oo, using (6.19) for the second term of the
left-hand side, and the arguments used in the course of proving (6.15), for the first term. As
a result we find that for any 1
!
2 p2 1
(expiyiappan +n8 B bm —mae <o
k=1

Passing now to the limit as ! — o0, we obtain the affirmation of lemma. Next we consider
the question of existence of a solution of the problem (5.3), (5.4).
Theorem 6.1. Let f <= H°. Then the problem (5.3), (5.4) has a solution P

Proof. By virtue of Lemma 6.2 A % (J and a sequence P,& A exists such that

lim J (P,) = inf J (P) (6.20)
i—soo Pea
Clearly, J (P;) < ¢ where ¢ is independent of i, therefore according to Lemma 6.4 there exists

a subsequence P; converging weakly to the statistical solution P! By virtue of Lemma 6.5
P'= A and
J(P)Y< HmJ (P (6.21)
Jco

and from (6.20), (6.21) it follows that P’is a solution of the problem (5.3), (5.4).

7. Unique solvability of the N-S system for almost all initial conditions.
Let P'be a solution of the system (5.3), (5.4). By virtue of Lemma 6.3 there exists a set
W= B (H“?) of P'-complete measure consisting of the individual solutions. Let us put

V=yW={ys S Hl:yo=170y for some yeW)} (7.1)
Then /3/ yo*P'(V)=1. The definition (7.1) of the set V implies directly that for any yo=V
there exists a solution y & H%? of the problem (4.1), (1.3). Since not more than one solu-
tion of the problem (4.1), (1.3) exists in the space H4.? /3/, this proves the following
theorem.

Theorem 7.1. Let P' be a solution of the problem (5.3), (5.4) and p,= yo*P Then for
fos; i.e. for almost all initial conditions Y, the problem (4.1), (1.3) has a unique solu-
tion yc& HL?

8. Uniqueness of the solution of the problem (5.3), (5.4).
Theorem 8.1. The problem (5.3), (5.4) has not more than one solution.

Proof. Let P, and P, be two solutions of the problem (5.3), (5.4); p;=y*P,. M;, is the
k-th moment of the measure p; and @ =1,2. By virtue of the strong convexity of any Hilbert
norm || -} we have

I+ B2 1B < NP 4 1] R 112

and the equality holds when and only when hy = h,. Therefore

J((Py F PY2) < (P + J (P2 (8.1)
and the equality is reached only and only in the case when
]l*[;,“lr_—']t{k'g (8.2)

for any k. Since P;and P, are solutions of problem (5.3), (5.4) while (P, - P)i2 e A,
therefore the equality is attained in (8.1) and this implies that (8.2) holds.
By virtue of (6.1) we have, for sufficiently small f >0,

§ exp (B 5o 1o? s (dyo) < ¢ S exp |y | La? |2 Pi(dy) < oo (8.3)



643

Let
ki =S i o llo® 1 (@yo)

The relation (8.3) implies the following inequality:
Z',Tn‘lk,i<°°
k=1

from which, making use of the Stirling formula we obtain

i (M’i)—xl(ﬂf) = 00 (8.4)
k=1

Using (8.2), (8.4) we derive the relation I == P, Let {¢;} be an orthonormed basis in H® and
G, an orthoprojector in H°onto the subspace le, .. ., e,] generated by the vectors e,...,e,.
Consider the finite-dimensional projections of the measures W

B (@) =p,; (Gi'0) Vo= B(le--..¢6))

Clearly, the k-th moment My ; of the measure B, is equal to (®'G,) M,; where ®" G, is the
k-th tensor degree of the operator G Therefore by virtue of (8.2), we have

.
M;,1=M;,z Vi, r (8.5)
Let us set

3’:-1=S Z ¥ (dyo), = <Yo €5)
F=1

Clearly, that

r

i < (2 2)" 1 (dwo) = 16,00 18" i (o) <

=1

and hence by virtue of (8.4),

kzjl (sﬁk_i)“"”" =000 Vr (8.6)

From (8.6) it follows /8/ that the measure p! is uniquely determined by its moments My’
therefore by virtue of (8.5) p =W.". Since the latter equality holds for any r, we have
y; = U, from which it follows /3/ that P; = P;, which proves the theorem.

As we have already said, the problem (5.3), (5.4) represents a statistical analog of the
control problems for a system described by the N-S equations which, as was shown in /2/, have
more than one solution under certain initial conditions. Nonuniqueness of the solutions in a
determinate case is explained by the fact that in these problems the nonlinearity of the N-S
equations results in the nonconvexity of the set of admissible elements. The difference be-
tween the determinate and statistical problems lies, roughly speaking, in the fact that in the
first case the solution is sought in the class of the 8 -measure, and in the second case in a
wider class of all probabilistic measures. Under such extension the nonconvex class becomes
convex and this leads to the uniqueness of the solution in the case of the statistical problems.

9. Certain variants of the problem (5.3), (5.4). We shall say that the measure
po defined on B (H") has the property Eif for 1y, almost all Ue the problem (4.1},(1.3)has
aunique solugion.We note that the integral (5.5) of the functional (5.2) carries the following
functions: 1°. Since the norm |ly|L,;%|| is P-integrable, the measure y,#P has the property
E since the problem (4.1}, (1.3) has at most one solution in the space L,?; 2°. Since
explly | L,AF is P-integrable, the relation (8.4) can be proved and this ensures that the
solution of the problem (5.3), (5.4) is unique. Therefore in constructing the measure |y,
with the property E we can use, apart from the norm || - | L,?|, the norms of the spaces in which
the solution of the problem (4.1), (1.3) is unique, e.g., ! | Ly|. The functional expll-|?
can be replaced by the functionals growing less rapidly as {jyjl > o©. We can, for example,
replace the functional (5.2) by the functional

- had 1 .
J(Py=\explly|Ld | P (@y) + N ¥~z I mis — Mo — in (9.1)
k=1
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Then the problem (9.1), (5.4) will also have a unique solution /' and ¥,*P will Lave tne
property E. Reducing the rate of growth in the value of the integrand in (5.5) by consider-
ing, e.g., a functional obeying a power law, we find that the infinite series in (5.2) can
be conveniently replaced by a finite sum. Let us consider, for example, the problem

J(P)=S ¥ L [ P(dy) + ma — My [y -+ f| me — M2 iy — inf (. 2)

for P satisfying the conditions (5.4). The problem (9.2), (5.4) has a sclution [’ while y*P
has the property E. An attempt to prove the uniqueness of the solution of (9.2), (5.4) has,
however, proved unsuccessfull. It could only be shown that the moments M; and M, are deter-
mined uniquely. The results related to the problem (9.2), (5.4) are given in /9/.
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